A new class of generalized Bayes minimax ridge regression estimators

نویسندگان

  • William E. Strawderman
  • W. E. STRAWDERMAN
چکیده

Let y = Aβ + ε, where y is an N × 1 vector of observations, β is a p× 1 vector of unknown regression coefficients, A is an N × p design matrix and ε is a spherically symmetric error term with unknown scale parameter σ. We consider estimation of β under general quadratic loss functions, and, in particular, extend the work of Strawderman [J. Amer. Statist. Assoc. 73 (1978) 623–627] and Casella [Ann. Statist. 8 (1980) 1036–1056, J. Amer. Statist. Assoc. 80 (1985) 753–758] by finding adaptive minimax estimators (which are, under the normality assumption, also generalized Bayes) of β, which have greater numerical stability (i.e., smaller condition number) than the usual least squares estimator. In particular, we give a subclass of such estimators which, surprisingly, has a very simple form. We also show that under certain conditions the generalized Bayes minimax estimators in the normal case are also generalized Bayes and minimax in the general case of spherically symmetric errors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Truncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space

 Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...

متن کامل

An extended class of minimax generalized Bayes estimators of regression coefficients

We derive minimax generalized Bayes estimators of regression coefficients in the general linear model with spherically symmetric errors under invariant quadratic loss for the case of unknown scale. The class of estimators generalizes the class considered in Maruyama and Strawderman (2005) to include non-monotone shrinkage functions. AMS subject classification: Primary 62C20, secondary 62J07

متن کامل

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

Optimal Estimation of Multidimensional Normal Means with an Unknown Variance

Let X ∼ Np(θ, σIp) and W ∼ σχm, where both θ and σ are unknown, and X is independent of W . Optimal estimation of θ with unknown σ is a fundamental issue in applications but basic theoretical issues remain open. We consider estimation of θ under squared error loss. We develop sufficient conditions for prior density functions such that the corresponding generalized Bayes estimators for θ are adm...

متن کامل

Estimation of Lower Bounded Scale Parameter of Rescaled F-distribution under Entropy Loss Function

We consider the problem of estimating the scale parameter &beta of a rescaled F-distribution when &beta has a lower bounded constraint of the form &beta&gea, under the entropy loss function. An admissible minimax estimator of the scale parameter &beta, which is the pointwise limit of a sequence of Bayes estimators, is given. Also in the class of truncated linear estimators, the admissible estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005